CodingBobby | Shapes of Chaos

Strange Attractors

When studying fluid dynamics and heat transfer I learned about chaos and the attractors. My first encounter was with the Lorenz attractor, of course (read this blog post). The pure beauty of its unpredictable but organic shape hooked me from the first minute – I believe this feeling will stay with me forever.

So here is a small collection of rather simple but in a way artistic renderings of attractors I made for fun. Click on the images to find out more about them.

In a chaotic system, the trajectory moves around on the attractor as time goes on, but two nearby points separate exponentially so that eventually they are very far apart. Although their future is determined uniquely and precisely by the governing equations, very small differences in the starting point can make large differences in the future conditions. Although tomorrow’s weather depends on the conditions today, and the weather the day after tomorrow depends on the conditions tomorrow, small errors in measuring the current weather eventually grow until all hope of predictability is lost – the ‘butterfly effect’.

– Julien Clinton Sprott

Chaos in Phase Space

There are also attractors in two dimensions. When not only one trajectory is shown (like for the attractors above), but many initial starting points across the 2D plane are fed into a differential system, we call the result the phase space of that respective system. Here, you can see some interesting patterns I’ve found.



Today’s fractal of the day by J.C. Sprott:

Sprott's Fractal of The Day

You can find some of my own graphics here.

animated Julia-Set